Abstract

What is the central question of this study? The aim was to establish the ability of a newly designed leg exercise technique to produce sustained elevations in shear rate that stimulate flow-mediated dilatation (FMD) in the superficial femoral artery and to determine the repeat trial stability of the FMD response. What is the main finding and its importance? Calf plantar-flexion exercise can be used to increase shear stress and stimulate FMD in the superficial femoral artery. However, the magnitude of FMD varied systematically when multiple trials were repeated in short succession. The superficial femoral artery (SFA) is susceptible to vascular disease, and a technique to assess flow-mediated dilatation (FMD) in this vessel in response to a sustained shear stress stimulus could provide important information about endothelial function. The aim of this study was to establish the ability of a newly designed SFA leg exercise-FMD (LEX-FMD) technique to produce sustained elevations in shear rate, which stimulate FMD, and to determine the repeat trial stability of the FMD response. The SFA FMD stimulated by reactive hyperaemia (RH) and calf plantar-flexion exercise (LEX) was assessed via ultrasound in 19 healthy men (n=10) and women (n=9). The two experimental visits included either four trials of LEX-FMD or four trials of RH-FMD. The shear stress stimulus was estimated as the shear rate (blood velocity/SFA diameter). Results are expressed as the means±SD. The LEX steady-state shear rate was consistent between trials (P=0.176), whereas the RH shear rate area under the curve was higher in trial 1versus trials 2-4 (P<0.05). The %RH-FMD (four-trial mean 4.9±2.5%) and absolute RH-FMD were not significantly different between trials (P=0.465 and P=0.359, respectively). Both %LEX-FMD and absolute LEX-FMD were higher during trial 3 (4.8±3.4%) than trial 1 (3.6±2.7%; P=0.026 and P=0.026, respectively). The magnitude of RH-FMD and LEX-FMD did not differ (P=0.241). These results indicate that calf plantar-flexion exercise can be used to increase shear stress and stimulate FMD in the SFA. However, although SFA RH-FMD was stable across four trials, LEX-FMD varied systematically when multiple trials were repeated in rapid succession.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.