Abstract

This study compares the fiber/matrix bonding strength and flexural properties of bundle-type polyamide fibers to those of hooked-end steel fibers. Their fracture behavior upon impact with a high-velocity projectile is also assessed in terms of penetration depth, crater diameter and rear-side scabbing. The results obtained demonstrate that the bundle-type polyamide fibers undergo fracture without fiber pullout because of the increased interfiber gap and specific surface area for bonding, but exhibit poorer flexural fracture behavior with a lower flexural strength and fracture energy when compared to hooked-end steel fibers. Yet despite this, concrete reinforced with bundle-type fibers is shown to more effectively suppress scabbing during high-velocity impact, which is attributed to a more efficacious dispersion of shock stress due to the increased number of individual fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.