Abstract

Abstract. This paper assesses several methods for the retrieval of Photosynthetically Active Radiation (PAR) from satellite imagery. The results of five different methods are compared to coincident in-situ measurements collected at three sites in southern UK. PAR retrieval methods are separated into two distinct groups. The first group comprises three methods that compute PAR by multiplying the satellite-retrieved solar broadband irradiance at the surface (SSI) by a constant coefficient. The two methods in the second group are based on more sophisticated modelling of the radiative transfer in the atmosphere involving advanced global aerosol property analyses and physically consistent total column water vapour and ozone produced by the Copernicus Atmosphere Monitoring Service (CAMS). Both methods compute a cloud modification factor from satellite-retrieved SSI. The five methods have been applied to two satellite-retrieved SSI datasets: HelioClim-3 version 5 (HC3v5) and CAMS Radiation Service (CAMS-Rad). Except at the seashore site, Group 2 methods combined with the cloud extinction from the HC3v5 dataset deliver the best results with small biases of −5 to 0 µmol m−2 s−1 (−1 % to 0 % relative to the mean of the measurements), root mean square errors of 130 µmol m−2 s−1 (28 %) and correlation coefficients exceeding 0.945. For all methods, best results are attained with the HC3v5 data set. These results demonstrate that all methods capture the temporal and spatial variability of the PAR irradiation field well, although several methods require a posteriori bias adjustments for reliable results. Combined with such an adjustment, the Udo et Aro method is a good compromise for this geographical area in terms of reliability, tractability and its ability to run in real-time. Overall, the method performing a spectral discretization in cloud-free conditions, combined with the HC3v5 dataset, outperforms other methods and has great potential for supporting an operational system.

Highlights

  • In southern UK, many growers are involved in outdoor vegetable production, soft fruit production is most commonly polytunnel-based

  • Results obtained for Copernicus Atmosphere Monitoring Service (CAMS)-Rad exhibit a weaker performance throughout than for HelioClim-3 version 5 (HC3v5) for all methods, except for the bias of Jacovides (−4 μmol m−2 s−1, −1 %)

  • The absolute values of the bias and the root mean square error (RMSE) are greater for CAMSRad than for HC3v5 and the correlation coefficients are smaller

Read more

Summary

Introduction

In southern UK, many growers are involved in outdoor vegetable production, soft fruit production is most commonly polytunnel-based. Tunnels offer a powerful control of the plant’s growing environment. The management of crops through the ventilation or the shadowing of tunnels offers some potential to regulate the production schedule and to enhance economic performance. An accurate knowledge of climatological and real-time PAR is valuable here. The relative scarcity of PAR measurements performed at terrestrial stations motivated researchers to seek alternatives by estimating PAR from satellite imagery (PAR-satellite methods). The purpose of this study is to compare five methods to estimate PAR against the measurements performed at three stations located in the area of soft fruit cultivation. Results will be discussed taking into account the constraints and challenges in accessing reliable long-term and real-time PAR datasets that are needed for this type of application

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.