Abstract

Externally venting flames (EVF) may emerge through openings in fully developed under-ventilated compartment fires, significantly increasing the risk of fire spreading to higher floors or adjacent buildings. Several fire engineering correlations have been developed, aiming to describe the main characteristics of EVF that affect the fire safety design aspects of a building, such as EVF geometry, EVF centreline temperature and EVF-induced heat flux to the facade elements. This work is motivated by recent literature reports suggesting that existing correlations, proposed in fire safety design guidelines (e.g. Eurocodes), cannot describe with sufficient accuracy the characteristics of EVF under realistic fire conditions. In this context, a wide range of EVF correlations are comparatively assessed and evaluated. Quantification of their predictive capabilities is achieved by means of comparison with measurements obtained in 30 different large-scale compartment-facade fire experiments, covering a broad range of heat release rates (2.8 MW to 10.3 MW), ventilation factor values (2.6 m5/2 to 11.53 m5/2) and ventilation conditions (no forced draught, forced draught). A detailed analysis of the obtained results and the respective errors corroborates the fact that many correlations significantly under-predict critical physical parameters, thus resulting in reduced (non-conservative) fire safety levels. The effect of commonly used assumptions (e.g. EVF envelope shape or model parameters for convective and radiative heat transfer calculations) on the accuracy of the predicted values is determined, aiming to highlight the potential to improve the fire engineering design correlations currently available.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call