Abstract
This paper presents an evaluation of two distinct techniques to improve energy absorption capability of an accordion cellular structure with close-to-zero Poisson’s ratio. For this purpose, fiber-reinforcement and foam-filling methods were employed to address the material enhancement and to obtain light and tough structures with high specific energy absorption. Employing an innovated additive manufacturing based on material extrusion process, specimens of glass fiber-reinforced PLA were produced in both in-plane directions to compare with the un-reinforced counterpart. In continue, some of the 3D printed samples were strengthened by means of polyurethane foam in their hollow structure. The quasi-static compressive tests showed that the initial stiffness, collapse stress, and plateau stress were enhanced significantly in the presence of both fiber-reinforcement and foam-filling. The energy absorption behavior of the enhanced cellular structure was then simulated via finite element method and a good-agreement between experimental and numerical results was observed. Afterwards, an analytical model was proposed to validate the observed elastic stiffness of the compressive samples. In comparison with the relevant cellular configurations, it was also demonstrated that the fiber-reinforced PLA accordion cellular structures, as well as the foam-filled ones, exhibited not only a greater specific energy absorption but also presented a lower density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.