Abstract

The possibility of assessing the safe size of the defects of metal continuity using risk criteria are considered. Such defects occur at all stages of the life cycle of structures. Assessment of their hazard and determination of their allowable size becomes important when the defects can lead to brittle or quasi-brittle fracture. In this case, models of linear and nonlinear fracture mechanics are used. In these models, defects are considered as internal elliptical or surface semi-elliptical cracks. The stochastic variety of shapes, sizes, locations, and orientations of defects has a significant effect on the destruction mechanisms. In this regard, the relevant probabilistic problem of assessing the permissible size of defects according to the criteria of the risk of destruction comes to the fore. We consider a general approach to assessing hazard of defects by risk criteria. Two settings of the probabilistic problem of risk assessment based on of one- and two-parameter fracture criteria are presented. The risk function in the form of the probability of fracture according to a given criterion is used as the main calculated characteristic. The expression of the risk function based on one-parameter criteria of fracture mechanics is presented. The main attention is paid to the probabilistic model based on the two-parameter fracture criterion by E. M. Morozov. This criterion provides ample opportunities for analyzing fracture mechanisms with a change in the size of defects. An expression for the risk function based on the family of two-dimensional probability distributions of Lu – Bhattacharya of the Weibull type is obtained. It is shown that the correlations of the fracture mechanisms can significantly affect the values of the fracture probabilities, and, consequently, the allowable size of defects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call