Abstract

The purpose of this study was to evaluate the effect of placing small lead shields on the temple region of the skull to reduce radiation dose to the lens of the eye during interventional fluoroscopically-guided procedures and cone-beam computed tomography (CBCT) scans of the head. EGSnrc Monte-Carlo code was used to determine the eye lens dose reduction when using lateral lead shields for single x-ray projections, CBCT scans with different protocols, and interventional neuroradiology procedures with the Zubal computational head phantom. A clinical C-Arm system was used to take radiographic projections and CBCT scans of anthropomorphic head phantoms without and with lead patches, and the images were compared to assess the effect of the shields. For single lateral projections, a 0.1 (0.3)-mm-thick lead patch reduced the dose to the left-eye lens by 40% to 60% (55% to 80%) from 45° to 90° RAO and to the right-eye lens by around 30% (55%) from 70° to 90° RAO. For different CBCT protocols, the reduction of lens dose with a 0.3-mm-thick lead patch ranged from 20% to 53% at 110 kVp. For CBCT scans of the anthropomorphic phantom, the lead patch introduced streak artifacts that were mainly in the orbital regions but were insignificant in the brain region where most neurointerventional activity occurs. The dose to the patient's eye lens can be reduced considerably by placing small lead shields over the temple region of the head without substantially compromising image quality in neuro-imaging procedures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.