Abstract

In this study, we present, for the first time in Spain, the levels of 19 mycotoxins in plasma samples from healthy and sick children (digestive, autism spectrum (ASD), and attention deficit hyperactivity (ADHD) disorders) (n = 79, aged 2–16). The samples were analyzed by liquid chromatography-mass spectrometry (triple quadrupole) (LC-MS/MS). To detect Phase II metabolites, the samples were reanalyzed after pre-treatment with β-glucuronidase/arylsulfatase. The most prevalent mycotoxin was ochratoxin A (OTA) in all groups of children, before and after enzyme treatment. In healthy children, the incidence of OTA was 92.5% in both cases and higher than in sick children before (36.7% in digestive disorders, 50% in ASD, and 14.3% in ADHD) and also after the enzymatic treatment (76.6 % in digestive disorders, 50% in ASD, and 85.7% in ADHD). OTA levels increased in over 40% of healthy children after enzymatic treatment, and this increase in incidence and levels was also observed in all sick children. This suggests the presence of OTA conjugates in plasma. In addition, differences in OTA metabolism may be assumed. OTA levels are higher in healthy children, even after enzymatic treatment (mean OTA value for healthy children 3.29 ng/mL, 1.90 ng/mL for digestive disorders, 1.90 ng/mL for ASD, and 0.82 ng/mL for ADHD). Ochratoxin B appears only in the samples of healthy children with a low incidence (11.4%), always co-occurring with OTA. Sterigmatocystin (STER) was detected after enzymatic hydrolysis with a high incidence in all groups, especially in sick children (98.7% in healthy children and 100% in patients). This supports glucuronidation as a pathway for STER metabolism in children. Although other mycotoxins were studied (aflatoxins B1, B2, G1, G2, and M1; T-2 and HT-2 toxins; deoxynivalenol, deepoxy-deoxynivalenol, 3-acetyldeoxynivalenol, 15-acetyldeoxynivalenol; zearalenone; nivalenol; fusarenon-X; neosolaniol; and diacetoxyscirpenol), they were not detected either before or after enzymatic treatment in any of the groups of children. In conclusion, OTA and STER should be highly considered in the risk assessment of mycotoxins. Studies concerning their sources of exposure, toxicokinetics, and the relationship between plasma levels and toxic effects are of utmost importance in children.

Highlights

  • Children’s physiology differs from that of adults

  • ochratoxin A (OTA) was the most prevalent mycotoxin (n = 50/79) (63.3%), and this prevalence was in all groups, with >limit of detection (LOD) levels in 92.5% (n = 37/40) of healthy children, 36.7% (n = 11/30) of children with digestive disorders, 50% (n = 1/2) of patients with autism spectrum disorder (ASD), and 14.3% (n = 1/7)

  • The incidence of OTA is much higher in healthy children than in children with digestive disorders (Figure 6)

Read more

Summary

Introduction

Children’s physiology differs from that of adults. Their higher metabolic rate, underdeveloped functional organs and relatively inefficient detoxification mechanisms make them more vulnerable to toxic compounds than adults [1]. Clinical symptoms and health outcomes can sometimes be more severe in children; in some cases, children are even affected by some compounds while adults are not. Children’s exposure to mycotoxins is not well known and has been linked to several acute and chronic pathologies [5,6,7]. Their symptoms and severity depend on the age, sex, immune system, and health status of the child and the specific toxins, or mixture of them, present in the diet, since ingestion is the main source of exposure to these toxic compounds [8,9]. Exposure by inhalation, skin, and mucous membranes, or a combination of two or more of these routes, should be considered [1]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call