Abstract

Performance of experimental Bacillus thuringiensis (Bt) MON events alone and pyramided with MON810 were evaluated over 3 yr in Georgia and Alabama. Ability of events to prevent whorl defoliation by the fall armyworm, Spodoptera frugiperda (J. E. Smith), and natural ear feeding damage by the corn earworm, Helicoverpa zea (Boddie) was assessed. In each year, near-isogenic hybrids with novel single transformation events and crosses pyramided with the MON810 event were compared with the standard single MON810 event and nontransformed susceptible control. Events were tested for resistance to whorl damage by manual infestations of fall armyworm and ear damage by natural infestations of corn earworm. All Bt events tested reduced fall armyworm whorl damage ratings per plant compared with the susceptible hybrid. All Bt treatments also had considerably less ear infestation and damage by corn earworm compared with the nontransgenic isoline. The MON841, MION849, and MON851 events reduced ear damage by H. zea but were not as effective as other novel events and were not advanced for further testing after the 1999 season. Pyramiding events compared with single events did not improve control of fall armyworm whorl damage, but they generally did prevent more ear damage by corn earworm. The MON84006 event singly and pyramided with MON810 had superior control of whorl-stage damage by S. frugiperda and ear damage by H. zea compared with MON810. Deployment of new events and genes could provide additional tools for managing the potential for insect resistance to Bt toxins. Furthermore, improved control of whorl and ear infestations by H. zea and S. frugiperda would increase the flexibility of planting corn, Zea mays L., and permit double cropping of corn in areas where these pests perennially reach damaging levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.