Abstract

In recent years, the use of antibiotics for human medicine, animal husbandry, agriculture, aquaculture, and product preservation has become a common practice. The use and application of antibiotics leave significant residues in different forms, with the aquatic environment becoming the critical sink for accumulating antibiotic residues. Numerous studies have been conducted to understand antibiotic removal and persistence in the aquatic environment. Nevertheless, there is still a huge knowledge gap on their complex interactions in the natural environment, their removal mechanism, and the monitoring of their fate in the environment. Water quality models are practical tools for simulating the fate and transport of pollutant mass in the aquatic environment. This paper reports an overview of the physical, chemical, and biological elimination mechanisms responsible for the degradation of antibiotics in natural surface water systems. It provides an in-depth review of commonly used quantitative fate models. An effort has been made to provide a compressive review of the modeling philosophy, mathematical nature, environmental applicability, parameter estimation, prediction efficiency, strength, and limitation of commonly used environmental antibiotic fate models. The study provides information linking paradigms of elimination kinetics and their simulation in the antibiotic fate models aiming at critical issues regarding current model development and future perspectives and to help users select appropriate models for practical water quality assessment and management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call