Abstract
The engine combustion network recommends two different imaging-based diagnostics for the measurement of diesel spray ignition delay and lift-off length, respectively. To measure ignition delay, high-speed imaging of broadband luminosity, spectrally filtered to limit collected wavelengths below 600 nm, is recommended. This diagnostic is often referred to as broadband natural luminosity. For lift-off length measurements, the engine combustion network recommends imaging of OH* chemiluminescence. This diagnostic requires using an image-intensified camera to detect narrowly filtered light around 310 nm. Alternatively, it has been shown that the lift-off length can be measured using broadband natural luminosity, avoiding the need for an intensifier and ultraviolet-transmitting optics. However, care is needed in the collection and processing of this diagnostic to accurately isolate the chemiluminescence signal. Particularly, standard intensity thresholding techniques are not sufficient for isolating the chemiluminescence signal in broadband natural luminosity images. Thus, an intensity-histogram-based thresholding method is introduced. This article assesses the feasibility and practicality of measuring lift-off length using broadband natural luminosity using a detailed comparison to OH* chemiluminescence measurements. It is shown that lift-off length measurements using broadband natural luminosity are prone to user bias error in the optical setup and data processing, especially under moderate- to high-sooting conditions. We conclude that while OH* imaging provides the most reliable and accurate measurement of lift-off length at a wide range of ambient conditions, an intensity-histogram analysis can help discriminate the high-temperature chemiluminescence signal from others in a broadband natural luminosity image at higher-sooting operating conditions than demonstrated in current literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.