Abstract

This study investigated the energy intake and expenditure of professional adolescent academy-level soccer players during a competitive week. Over a seven day period that included four training days, two rest days and a match day, energy intake (self-reported weighed food diary and 24-h recall) and expenditure (tri-axial accelerometry) were recorded in 10 male players from a professional English Premier League club. The mean macronutrient composition of the dietary intake was 318 ± 24 g·day−1 (5.6 ± 0.4 g·kg−1 BM) carbohydrate, 86 ± 10 g·day−1 (1.5 ± 0.2 g·kg−1 BM) protein and 70 ± 7 g·day−1 (1.2 ± 0.1 g·kg−1 BM) fats, representing 55% ± 3%, 16% ± 1%, and 29% ± 2% of mean daily energy intake respectively. A mean daily energy deficit of −1302 ± 1662 kJ (p = 0.035) was observed between energy intake (9395 ± 1344 kJ) and energy expenditure (10679 ± 1026 kJ). Match days (−2278 ± 2307 kJ, p = 0.012) and heavy training days (−2114 ± 2257 kJ, p = 0.016) elicited the greatest deficits between intake and expenditure. In conclusion, the mean daily energy intake of professional adolescent academy-level soccer players was lower than the energy expended during a competitive week. The magnitudes of these deficits were greatest on match and heavy training days. These findings may have both short and long term implications on the performance and physical development of adolescent soccer players.

Highlights

  • Soccer is typically classified as a high-intensity, intermittent team sport comprised of two 45 min halves [1]

  • All participants were actively engaged in full training and competition, which over the course of the study consisted of four training days, a match day and two non-training recovery days within a seven day period

  • Over a seven day period male adolescent academy-level soccer players were in a negative energy balance

Read more

Summary

Introduction

Soccer is typically classified as a high-intensity, intermittent team sport comprised of two 45 min halves [1]. In adult players of similar standard, match distances typically range between 9 and 13 km [5,6,7]. Similar match distances may insinuate comparable workloads between youth and adult populations. Utilizing adult data to predict adolescent athletes’ energy expenditure has been criticized and may not be directly comparable, due to the increased energy cost of exercise [8]. Energy balance is integral for adolescents to sustain optimal growth and development [9,10], with additional nutritional intake required to offset the increased energy cost of high-level training and competition [11]

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call