Abstract

This paper presents a mathematical analysis of how energy return in grid-connected single-phase photovoltaic systems affects the sizing of passive components. Energy return affects the size of the link capacitor, making it larger than reported in the literature. One of the main points of this article is that an inverter connected to the grid using a DC–DC converter with an appropriate link capacitor is analyzed. The energy return is caused by the value (in Henry units) of the L-filter, which is also analyzed in this paper. The analysis shows that there is a link between the value of the L-filter and the voltage of the DC bus. The analysis assumes two conditions: (1) the DC bus voltage is always higher than the peak value of the grid sinusoidal voltage, and (2) there is a unity power factor at the connection point between the grid and the L-filter. To operate in an open loop, a compensation phase angle is calculated and introduced in the single-phase inverter modulation; this phase angle compensates the phase shift caused by the L-filter, avoiding the use of a phase-locked-loop (PLL) control system. The L-filter ripple current is evaluated by Fourier analysis, and the DC bus ripple voltage is evaluated by considering the energy returned to the link capacitor. The results of the analyses are compared with existing methods reported in the literature. The results also show that, to minimize the value of the L-filter, the DC voltage must be almost equal to the maximum voltage of the grid. Equations to assess the value of the DC-link capacitor and the L-filter in function of their ripples are developed. The results were verified with simulations in Simulink and experimentally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.