Abstract

We have developed a comprehensive model to estimate annual end-use electricity consumption and peak demand of housing stock, considering occupants' use of air conditioning systems and major appliances. The model was applied to analyse private dwellings in Townsville, Australia's largest tropical city. For the financial year (FY) 2010–11 the predicted results agreed with the actual electricity consumption with an error less than 10% for cooling thermostat settings at the standard setting temperature of 26.5°C and at 1.0°C higher than the standard setting. The greatest difference in monthly electricity consumption in the summer season between the model and the actual data decreased from 21% to 2% when the thermostat setting was changed from 26.5°C to 27.5°C. Our findings also showed that installation of solar panels in Townville houses could reduce electricity demand from the grid and would have a minor impact on the yearly peak demand. A key new feature of the model is that it can be used to predict probability distribution of energy demand considering (a) that appliances may be used randomly and (b) the way people use thermostats. The peak demand for the FY estimated from the probability distribution tracked the actual peak demand at 97% confidence level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.