Abstract
Background Electroporation accomplishes transient permeabilization of cells and thus aids in the uptake of drugs. The method has been employed clinically in the treatment of dermatological tumors with bleomycin. The conditions of electroporation are still largely empirical and information is lacking as to the interrelationships among voltage pulse height, pulse number and toxicity, cell permeation, drug uptake, and effects on drug toxicity. We used propidium iodide (PI) and flow cytometry to define cell permeation into cytoplasmic and nuclear compartments to determine the improvements of drug toxicity that can be accomplished by electroporation. Methods Human squamous carcinoma cells of defined TP53 status and normal human epithelial cells were subjected to electroporation using a square wave pulse generator in the range of 0–5,000 V/cm. Flow cytometry served to establish entry of the drug reporter, PI, into the cytoplasm and nucleus. A dye staining method served to establish cell survival and to determine the toxicity of bleomycin alone, electroporation alone, and electroporation with bleomycin. Results The electric field intensity (EFI) required to produce 50% permeabilization (EP50) is cell type dependent. The EP50 varied from 1,465 to 2,027 V/cm. An EFI below 900 V/cm is growth stimulatory whereas an EFI in excess of 1,000 V/cm is growth inhibitory. An EFI of 1,000 V/cm is sufficient to increase bleomycin toxicity by a factor of 2–3. A differential electroporation efficiency is observed between normal and tumor cells. Conclusions Tumor cells can be targeted preferentially at electroporation voltages where normal cells are less permeable. Cytometry 41:96–101, 2000 © 2000 Wiley-Liss, Inc.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.