Abstract
Previous studies have described both surface morphology and adhesive properties of fungal spores, but little information is currently available on their mechanical properties. In this study, atomic force microscopy (AFM) was used to investigate both surface topography and micromechanical properties of Aspergillus nidulans spores. To assess the influence of proteins covering the spore surface, wild-type spores were compared with spores from isogenic rodA(+) and rodA(-) strains. Tapping-mode AFM images of wild-type and rodA(+) spores in air showed characteristic "rodlet" protein structures covering a granular spore surface. In comparison, rodA(-) spores were rodlet free but showed a granular surface structure similar to that of the wild-type and rodA(+) spores. Rodlets were removed from rodA(+) spores by sonication, uncovering the underlying granular layer. Both rodlet-covered and rodlet-free spores were subjected to nanoindentation measurements, conducted in air, which showed the stiffnesses to be 110 +/- 10, 120 +/- 10, and 300 +/- 20 N/m and the elastic moduli to be 6.6 +/- 0.4, 7.0 +/- 0.7, and 22 +/- 2 GPa for wild-type, rodA(+) and rodA(-) spores, respectively. These results imply the rodlet layer is significantly softer than the underlying portion of the cell wall.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.