Abstract

The world we live in is becoming more and more dependent on electrical energy and shortage of energy is bound to happen in the nearest future. India is the third largest in terms of power generation. Global warming and climate changes are the biggest challenge faced by mankind. Use of energy resources which are renewable and green that is producing low carbon emission is the need of the day. India has invested heavily on wind energy and solar energy. Ocean wave energy generation is renewable process with minimal carbon emission as well as less land requirement. India has a long coastline and has a tremendous scope for generation of wave energy along its coastline. Wave Energy Converter (WEC) is the device used in the wave energy extraction. For making the wave energy conversion feasible, the efficiency of a WEC is required to be assessed. For the design of WEC and assessment of its efficiency numerical models are very much useful giving the flexibility of assessing a number of alternatives at a relatively low cost. An attempt is made in this paper to estimate efficiency of an array of WECs using the Boussinesq Wave Model, namely the mathematical model MIKE21-BW. A site at Bhagvati Bandar, which is identified as hotspot for wave energy generation is considered for the installation of WECs. Numerical model experiments were carried out to find optimal configuration of an array of WECs and the findings are presented in this paper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.