Abstract

A new type of bioceramic with osteogenic properties, suitable for hard tissue regeneration, was synthesised. The ceramic was designed and obtained in the Nurse’s A-phase-silicocarnotite subsystem. The selected composition was that corresponding to the eutectoid 28.39 wt % Nurse’s A-phase-71.61 wt % silicocarnotite invariant point. We report the effect of Nurse’s A-phase-silicocarnotite ceramic on the capacity of multipotent adult human mesenchymal stem cells (ahMSCs) cultured under experimental conditions, known to adhere, proliferate and differentiate into osteoblast lineage cells. The results at long-term culture (28 days) on the material confirmed that the undifferentiated ahMSCs cultured and in contact with the material surface adhered, spread, proliferated, and produced a mineralised extracellular matrix on the studied ceramic, and finally acquired an osteoblastic phenotype. These findings indicate that it underwent an osteoblast differentiation process. All these findings were more significant than when cells were grown on plastic, in the presence and absence of this osteogenic supplement, and were more evident when this supplement was present in the growth medium (GM). The ceramic evaluated herein was bioactive, cytocompatible and capable of promoting the proliferation and differentiation of undifferentiated ahMSCs into osteoblasts, which may be important for bone integration into the clinical setting.

Highlights

  • Despite its extraordinary healing ability, bone response may be unsuccessful for repairing the severe damage caused by injuries, tumours, infections and ageing-related problems

  • We previously reported that adult human mesenchymal stem cells (ahMSCs) derived from bone marrow can be cultured on tricalcium phosphate (TCP) and Si-TCP ceramics [1,2]

  • Under osteogenic conditions, cultured ahMSCs further differentiate into cells with the osteoblastic phenotype and are able to fabricate an extracellular bone matrix

Read more

Summary

Introduction

Despite its extraordinary healing ability, bone response may be unsuccessful for repairing the severe damage caused by injuries, tumours, infections and ageing-related problems. Materials available for bone replacement include autologous bone, allograft, xenograft, demineralised bone matrix (DBM), and various synthetic materials such as ceramics Hydroxyapatite (HA), tricalcium phosphate (TCP), composites, polymers, silk-fibroin, etc., and all with the associated complications and drawbacks. An autologous cancellous bone graft, is considered a gold. Materials 2016, 9, 969 standard because of its osteoconductive, osteoinductive and osteogenic properties, which are necessary for bone repair. Current technology enables the regeneration of viable tissue or organs by using cultured cells and suitable scaffolds. We previously reported that ahMSCs derived from bone marrow can be cultured on TCP and Si-TCP ceramics [1,2]. Under osteogenic conditions, cultured ahMSCs further differentiate into cells with the osteoblastic phenotype and are able to fabricate an extracellular bone matrix (osteopontin, osteocalcin, bone sialoprotein)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.