Abstract

BackgroundThis study aimed at assessing the effectiveness and safety of repeated administrations of allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) primed with tumor necrosis factor (TNF)-α and interferon-γ in an equine model of chemically-induced osteoarthritis. Arthritis was induced in both radio-carpal (RC)-joints by amphotericin-B in 18 ponies, divided into three groups depending on the treatment injected: MSC-naïve (n = 7), MSC-primed (n = 7) and control (n = 4). The study consisted of two phases and used one RC-joint of each animal in each phase, with four months time-lapse, in order to assess two end-points. Clinical, synovial, radiological and ultrasonographic follow-up was performed. At six months, animals were euthanized and both carpi were assessed by magnetic resonance imaging (MRI), gross anatomy, histopathology, histochemistry and gene expression.ResultsClinical and synovial inflammatory signs were quicker reduced in MSC-treated groups and repeated allogeneic administration did not produce adverse reactions, but MSC-primed group showed slight and transient local inflammation after second injection. Radiology and MRI did not show significant differences between treated and control groups, whereas ultrasonography suggested reduced synovial effusion in MSC-treated groups. Both MSC-treated groups showed enhanced cartilage gross appearance at two compared to six months (MSC-naïve, p < 0.05). Cartilage histopathology did not reveal differences but histochemistry suggested delayed progression of proteoglycan loss in MSC-treated groups. Synovium histopathology indicated decreased inflammation (p < 0.01) in MSC-primed and MSC-naïve at two and six months, respectively. At two months, cartilage from MSC-primed group significantly (p < 0.05) upregulated collagen type II (COL2A1) and transforming growth factor (TGF)-β1 and downregulated cyclooxygenase-2 and interleukin (IL)-1β. At six months, MSC-treatments significantly downregulated TNFα (p < 0.05), plus MSC-primed upregulated (p < 0.05) COL2A1, aggrecan, cartilage oligomeric protein, tissue inhibitor of metalloproteinases-2 and TGF-β1. In synovium, both MSC-treatments decreased (p < 0.01) matrix metalloproteinase-13 expression at two months and MSC-primed also downregulated TNFα (p < 0.05) and IL-1β (p < 0.01).ConclusionsBoth MSC-treatments provided beneficial effects, mostly observed at short-term. Despite no huge differences between MSC-treatments, the findings suggested enhanced anti-inflammatory and regulatory potential of MSC-primed. While further research is needed to better understand these effects and clarify immunogenicity implications, these findings contribute to enlarge the knowledge about MSC therapeutics and how they could be influenced.

Highlights

  • This study aimed at assessing the effectiveness and safety of repeated administrations of allogeneic bone marrow-derived mesenchymal stem cells (BM-Mesenchymal stem cell (MSC)) primed with tumor necrosis factor (TNF)-α and interferon-γ in an equine model of chemically-induced osteoarthritis

  • Despite no huge differences between MSC-treatments, the findings suggested enhanced anti-inflammatory and regulatory potential of MSC-primed

  • While further research is needed to better understand these effects and clarify immunogenicity implications, these findings contribute to enlarge the knowledge about MSC therapeutics and how they could be influenced

Read more

Summary

Introduction

This study aimed at assessing the effectiveness and safety of repeated administrations of allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) primed with tumor necrosis factor (TNF)-α and interferon-γ in an equine model of chemically-induced osteoarthritis. The lack of effective treatments for joint pathologies such as osteoarthritis (OA) has risen interest in therapies based on mesenchymal stem cells (MSCs) [1]. Provided that their engraftment in the cartilage appears to be low [2, 3], MSC benefit is being mainly attributed to their paracrine mechanisms including trophic and immunomodulatory properties. Inflammation generated in this model eventually results in erosive lesions of the articular cartilage related to OA [11, 12]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call