Abstract

Accurate supply and demand matching of ecosystem services (ESs) is important for managing regional ecosystems. On the basis of remote-sensing, meteorological, and socio-economic data, we mapped the supply, demand, and matching status of four ESs (i.e., water production, carbon sequestration, food supply, and soil conservation) using biophysical models and the ArcGIS spatial analysis module within the Zhengzhou–Kaifeng–Luoyang (ZKL) urban agglomeration in 2018. Four-quadrant analysis was employed to identify the spatial matching types of supply-demand relationships within the study region. The results are as follows. The supply-demand ratios of different ESs in the cell scale exhibit different spatial characteristics because of major influencing factors, including the natural environment (e.g., precipitation and temperature) and social development (e.g., urbanization level). Analysis of the supply-demand imbalances of the four ESs indicates that water production is deficient across the entire research area, whereas the whole research area’s carbon sequestration, food supply, and soil conversation are in the surplus state. Regarding the spatial matching types for supply and demand of the four ecosystem services, water production is dominated by the “low–low (low supply and low demand)” type. Carbon sequestration is dominated by the “low–low” and “high–low (high supply and low demand)” types. The “low–low” type dominates food supply and soil conservation. Due to the severity of the deficit in water production, all districts and counties in the ZKL urban agglomeration are identified as areas requiring ecological conservation, ecological restoration, or ecological improvement. Development guidance strategies and planning suggestions are proposed in different ecological areas. These policies could also be applied in other similar urban agglomerations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call