Abstract

Exploring the spatial flow pattern of ecosystem services and clarifying the transmission path between the supply area and the demand area will help to formulate more scientific and reasonable ecological protection policies. This paper takes the rapid urbanization area representing the Pearl River Delta urban agglomeration as an example. Using Invest model to quantitative the assessment of the supply and demand of carbon sequestration services and water ecosystem services from 2000 to 2020, a spatial flow model of ecosystem services is constructed to clarify the spatial flow of regional ecosystem services pattern. In addition, the Geo-detector model is used to explore the driving factors of the supply and demand relationship of ecosystem services, and the spatiotemporal geographic weighted regression model is further used to analyze the temporal and spatial differentiation of the impact degree. Finally, based on the Bayesian belief network, the optimal state factor configuration is selected to optimize the spatial pattern, and the corresponding optimization strategy is given. The main conclusions are as follows: (1) The supply of carbon sequestration services in the Pearl River Delta decreased gradually during 2000–2020, while the demand increased gradually. The supply of water ecosystem services increased first and then decreased, while the demand showed a downward trend. (2) In terms of spatial heterogeneity of supply and demand matching, the main driving factors of carbon sequestration services included night light brightness value, temperature and vegetation index; The main driving factors of water ecosystem services include night light brightness value, land use type and vegetation index. (3) In terms of optimal areas for supply and demand matching, carbon sequestration services were mainly distributed in Zhaoqing, Huizhou and Jiangmen; The optimal matching areas of water ecosystem service supply and demand were mainly distributed in Zhaoqing, Guangzhou, Huizhou and other cities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.