Abstract
Magnitude and temporal variability of streamflow is essential for natural biodiversity and the stability of aquatic environments. In this study, a comparative analysis between historical data (1971–2013) and future climate change scenarios (2010–2039, 2040–2069 and 2070–2099) of the hydrological regime in the Eo river, in the north of Spain, is carried out in order to assess the ecological and hydro-geomorphological risks over the short-, medium- and long-term. The Soil and Water Assessment Tool (SWAT) model was applied on a daily basis to assess climate-induced hydrological changes in the river under five general circulation models and two representative concentration pathways. Statistical results, both in calibration (Nash-Sutcliffe efficiency coefficient (NSE): 0.73, percent bias (PBIAS): 3.52, R2: 0.74) and validation (NSE: 0.62, PBIAS: 6.62, R2: 0.65), are indicative of the SWAT model’s good performance. The ten climate scenarios pointed out a reduction in rainfall (up to −22%) and an increase in temperatures, both maximum (from +1 to +7 °C) and minimum ones (from +1 to +4 °C). Predicted flow rates resulted in an incrementally greater decrease the longer the term is, varying between −5% (in short-term) and −53% (in long-term). The free software IAHRIS (Indicators of Hydrologic Alteration in Rivers) determined that alteration for usual values remains between excellent and good status and from good to moderate in drought values, but flood values showed a deficient regime in most scenarios, which implies an instability of river morphology, a progressive reduction in the section of the river and an advance of aging of riparian habitat, endangering the renewal of the species.
Highlights
River systems provide ecological services of utter importance both to Earth’s biodiversity and society’s development [1]
The free software IAHRIS (Indicators of Hydrologic Alteration in Rivers) determined that alteration for usual values remains between excellent and good status and from good to moderate in drought values, but flood values showed a deficient regime in most scenarios, which implies an instability of river morphology, a progressive reduction in the section of the river and an advance of aging of riparian habitat, endangering the renewal of the species
We analysed the changes in precipitation and both maximum and minimum temperatures of historical recorded data in the 1970–1999 period compared to the ten climate change scenarios studied (Table 7) according to three different time periods: short-term (2010–2039), mid-term (2040–2069) and long-term (2070–2099)
Summary
River systems provide ecological services of utter importance both to Earth’s biodiversity and society’s development [1]. One of the main goals is to achieve the good status of water bodies, both surface water and groundwater, protecting them and avoiding their deterioration. Their status will be determined by the sum of ecological and chemical characteristics. The assessment of ecological status is evaluated by the combination of biological, physical-chemical and hydro-geomorphological indexes. The latter conditions can be grouped into four categories: physical habitat assessment, riparian habitat assessment, morphological assessment and assessment of hydrological regime alteration [3]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.