Abstract

One of the most important and effective factors of structural strength against the risk of progressive collapse is the type of lateral load bearing system of a building. In this research, strength of dual steel moment frames equipped with a variety of eccentric bracings against progressive collapse was evaluated by using nonlinear static alternate path method. 6-floored building samples were designed with steel frame using a dual steel moment system together with 3 different types of bracing, including inverted eccentrically V-shaped bracing (chevron bracing), eccentrically V-shaped bracing and eccentrically X-shaped bracing, each with two different kinds of arrangement of bracings in the structural plan, in form of alternate and neighbor. The effects of sudden removal of columns on different floors of these buildings were examined. These studies showed that dual steel moment frames equipped with eccentric bracings generally exhibited desirable strength against progressive collapse. A change in the type of bracing resulted in significant changes in the system capacity in the progressive collapse. Among the different types of braces assessed, chevron type eccentrically brace showed higher strength against progressive collapse. Also, that alternate arrangement of bracings in structure plan demonstrated better performance than neighboring arrangement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.