Abstract

Mobility change of water molecules in ionic solutions has been a long standing issue in the field of spectroscopy; however, the molecular mechanism is still controversial. To address this issue, molecular dynamics (MD) simulations are considered to be useful tools because MD simulations can provide deeper insights into dynamics of water molecules at the atomic level, compensating for the limitation of experimental observations. However, the reliability of these simulations is significant and strongly dependent on the molecular models employed. We examined the reproduction of the dynamics of water molecules under the influence of alkali and halide monovalent ions by using the framework of classical MD simulations. Conventional water models were combined with non-polarizable ion models. The decreased mobility of water molecules was reproduced in our simulations while the increased mobility could not be reproduced. However, from the examined water models, the TIP5P model can be promising to reproduce the experimental results if ion–water interactions are improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.