Abstract

Drag reduction at topographically structured surfaces that contain a second immiscible fluid in their corrugations is evaluated. Based on a model for the effective slip length of a grooved surface, a threshold for the structured surface being superior to a flat surface with respect to drag reduction is derived for fluids of arbitrary viscosity filling the grooves and flowing over the surface. The specific magnitude of drag reduction is given exemplarily for pressure-driven pipe flow. Flow transverse to the grooves as well as flow longitudinal to open and closed grooves is considered. For typical surface geometry parameters, a flow rate enhancement by several tens of percent is predicted.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.