Abstract
In this work, the applicability of direct analysis in real time coupled to accurate mass spectrometry (DART-MS) to the quantitative determination of triclosan (TCS) in samples with increasing complexity, from personal care products to extracts from sewage, is investigated. In the first term, DART-MS spectra of TCS as free phenol and as derivatized species are characterized; thereafter, the effects of several instrumental variables in the detectability of TCS (i.e., temperature, solvent, and compound holder) are discussed. Under final selected conditions, TCS was determined from its [M-H]− ions, without need of derivatization, attaining an instrumental limit of quantification of 5 ng mL−1, with a linear response range up to 1000 ng mL−1. Complex matrices, such as solid-phase extracts obtained from environmental water samples, moderately inhibited the ionization efficiency of TCS, with signal attenuation percentages in the range of 6 to 57%, depending on the sample type and on the concentration factor provided by the SPE procedure. The accuracy of results obtained by DART-MS was evaluated using liquid chromatography (LC) with MS detection; in both cases, a time-of-flight (TOF) MS instrument was employed for the selective determination of the [M−H]− ions of TCS (m/z values 286.9439 and 288.9410) using a mass window of 20 ppm. DART-MS did not only provide enough sensitivity to detect the presence of TCS in environmental samples (raw and treated wastewater as well as freeze-dried sludge), but also measured concentrations matched those determined by LC-ESI-TOF-MS, with only slightly higher standard deviations. During analysis of personal care products, containing much higher concentrations of TCS in a less complex matrix, both techniques were equivalent in terms of accuracy and precision.Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.