Abstract

The photochemical conversion of diphenylcyclopropenone to diphenylacetylene has recently been reported. Diphenylcyclopropenone is used in the treatment of alopecia areata and is nonmutagenic in a limited Ames assay. We examined diphenylcyclopropenone and diphenylacetylene, as well as synthetic precursors of diphenylcyclopropenone--dibenzylketone and alpha,alpha'-dibromodibenzylketone--for mutagenicity against TA100, TA98, TA102, UTH8413, and UTH8414. All compounds were nonmutagenic except alpha,alpha'-dibromodibenzylketone, which was a potent mutagen in TA100 with and without S-9 activation. The effect of photochemical activation of diphenylcyclopropenone in the presence of bacteria demonstrated mutagenicity in UTH8413 (two times background) at 10 micrograms/plate with S-9 microsomal activation. 8-Methoxypsoralen produces a mutagenic response in TA102 at 0.1 microgram/plate with 60 seconds of exposure to 350 nm light. In vitro photochemically activated Ames assay with S-9 microsomal fraction may enhance the trapping of short-lived photochemically produced high-energy mutagenic intermediates. This technique offers exciting opportunities to trap high-energy intermediates that may play an important role in mutagenesis. This method can be applied to a variety of topically applied dermatologic agents, potentially subjected to photochemical changes in normal use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.