Abstract

In order to avoid environmental pollution and eliminate the need for using fertiliser, this study assessed for the first time the optimum performance of mature (in operation since 2011) vertical flow constructed wetlands in treating domestic wastewater (with and without hydrocarbon) and the subsequent recycling of the outflow to irrigate chillies (De Cayenne; Capsicum annuum (Linnaeus) Longum Group ‘De Cayenne’) grown in a greenhouse. Various variables were investigated to assess the treatment performance. Concerning chilli fruit numbers, findings showed that the highest fruit yields for all wetland filters were associated with those that received inflow wastewater with a high loading rate, reflecting the high nutrient availability in treated wastewater, which is of obvious importance for yield production. Findings also indicated that wetlands without hydrocarbon, small aggregate size, low contact time and low inflow loading rate provided high marketable yields (expressed in economic return). In comparison, chillies irrigated by filters with hydrocarbon contamination, small aggregate size, high contact time and high loading rate also resulted in high marketable yields of chillies, which pointed out the role of high contact time and high inflow load for better diesel degradation rates.Electronic supplementary materialThe online version of this article (doi:10.1007/s11356-016-7706-x) contains supplementary material, which is available to authorized users.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.