Abstract

Combustion noise in passenger cars powered with direct injection (DI) diesel engines is frequently the main reason why end-users are reluctant to drive this type of vehicle. Thus, the great potential of diesel engines for environment preservation — due to their lower CO2 emissions — could be missed. This situation worsens with the current design trends (engine downsizing) and the emerging new diesel combustion concepts (Homogeneous Charge Compression Ignition-HCCI, Premixed Charge Compression Ignition-PCCI, etc.), which are intrinsically noisy. This negative feature can be even more critical in transient operation due to the contribution of the temporal changes of both source and transmission path on engine noise. Therefore, combustion noise must be considered as an additional essential factor in engine development, together with performance, emissions and driveability. Thus, suitable evaluation procedures that can be integrated into the global engine development process in a timely and cost-effective manner are imperative. Regarding the evaluation procedures, most of the work available in the literature addressed combustion noise at steady operation. To surpass this limitation, two possible approaches — adapted from the classical and multiple regression methods — for the overall level assessment of combustion noise in transient conditions are evaluated in this paper.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call