Abstract

Chemotaxis, or migration up a gradient of a chemoattractant, is the best understood mode of directed migration. Studies using social amoeba Dictyostelium discoideum revealed that a complex signal transduction network of parallel pathways amplifies the response to chemoattractants, and leads to biased actin polymerization and protrusion of a pseudopod in the direction of a gradient. In contrast, molecular mechanisms driving other types of directed migration, for example, due to exposure to shear flow or electric fields, are not known. Many regulators of chemotaxis exhibit localization at the leading or lagging edge of a migrating cell, as well as show transient changes in localization or activation following global stimulation with a chemoattractant. To understand the molecular mechanisms of other types of directed migration we developed a method that allows examination of cellular response to acute mechanical stimulation based on brief (2 - 5 s) exposure to shear flow. This stimulation can be delivered in a channel while imaging cells expressing fluorescently-labeled biosensors to examine individual cell behavior. Additionally, cell population can be stimulated in a plate, lysed, and immunoblotted using antibodies that recognize active versions of proteins of interest. By combining both assays, one can examine a wide array of molecules activated by changes in subcellular localization and/or phosphorylation. Using this method we determined that acute mechanical stimulation triggers activation of the chemotactic signal transduction and actin cytoskeleton networks. The ability to examine cellular responses to acute mechanical stimulation is important for understanding the initiating events necessary for shear flow-induced motility. This approach also provides a tool for studying the chemotactic signal transduction network without the confounding influence of the chemoattractant receptor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.