Abstract

Method Seven dilated cardiomyopathy (DCM) patients (4 female, aged 52 ± 14 years, ejection fraction 43 ± 5% [mean ± SD]) and six healthy subjects (3 female, aged 58 ± 4 years) were studied. 4D velocity data and morphological b-SSFP images were acquired on a 1.5 T MRI-scanner (Philips Achieva). The LV endocardium was segmented (http:// segment.heiberg.se) from the short axis images at the times of isovolumetric contraction (IVC) and isovolumetric relaxation (IVR). Pathlines were emitted from the IVC LV blood volume and traced forward and backward in time until IVR, thus including the entire cardiac cycle. The IVR volume was used to determine if and where the traces left the LV. This information was used to automatically separate inflow pathlines into two components [1]: direct flow that enters and leaves the LV within the same cardiac cycle, and retained inflow that does not leave the LV within a single cardiac cycle. By knowing the volume occupied by each trace, its velocity and the density of blood, the change in KE was calculated from the time of the traces' entrance into the LV (by crossing a plane at the mitral annulus) until the time of IVC. from 13th Annual SCMR Scientific Sessions Phoenix, AZ, USA. 21-24 January 2010

Highlights

  • Heart failure represents the final stage of the continuum of cardiovascular diseases

  • By knowing the volume occupied by each trace, its velocity and the density of blood, the change in kinetic energy (KE) was calculated from the time of the traces' entrance into the left ventricle (LV) until the time of isovolumetric contraction (IVC)

  • The direct flow/total LV inflow ratio was lower and the retained inflow/total LV inflow ratio was higher in dilated cardiomyopathy (DCM) versus healthy subjects (48 ± 4 vs 67 ± 8 %, P < 0.001, and 52 ± 4 vs 33 ± 8 %, P < 0.001, respectively) (Figure 1)

Read more

Summary

Background

Heart failure represents the final stage of the continuum of cardiovascular diseases. Alterations in LV flow behavior have been recognized and may contribute to the vicious cycle of progressive adverse remodeling. Assessment of the efficiency of blood transiting the LV throughout diastole remains incomplete. By knowing the volume occupied by each trace, its velocity and the density of blood, the change in KE was calculated from the time of the traces' entrance into the LV (by crossing a plane at the mitral annulus) until the time of IVC

Method
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.