Abstract

UV-C radiation is the U.S. EPA recommended technology to remove N-nitrosodimethylamine (NDMA) during drinking and recycled water production. Frequently, H(2)O(2) is added to the treatment to remove other recalcitrant compounds and to prevent NDMA reformation. However, the transformation of NDMA precursors during the UV and UV/H(2)O(2) process and the consequences for NDMA formation potential are currently not well understood, in particular in the presence of monochloramine. In this study, doxylamine has been chosen as a model compound to elucidate its degradation byproducts in the UV and UV/H(2)O(2) process and correlate those with changes to the NDMA formation potential. This study shows that during UV treatment in the presence and absence of monochloramine, NDMA formation potential can be halved. However, an increase of more than 30% was observed when hydrogen peroxide was added. Ultrafast liquid chromatography coupled to quadrupole-linear ion trap mass spectrometer was used for screening and structural elucidation of degradation byproducts identifying 21 chemical structures from the original parent compound. This work shows that further oxidation of NDMA precursors does not necessarily lead to a decrease in NDMA formation potential. Degradation byproducts with increased electron density in the vicinity of the dimethylamino moiety, for example induced by hydroxylation, may have a higher yield of nucleophilic substitution and subsequent NDMA formation compared to the parent compound during chloramination. This work demonstrates the need to consider the formation of oxidation byproducts and associated implications for the control and management of NDMA formation in downstream processes and distribution when integrating oxidative treatments into a treatment train generating either drinking water or recycled water for potable reuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.