Abstract
BackgroundPhysiological dead space (VD/VT) represents the fraction of ventilation not participating in gas exchange. In patients with acute respiratory distress syndrome (ARDS), VD/VT has prognostic value and can be used to guide ventilator settings. However, VD/VT is rarely calculated in clinical practice, because its measurement is perceived as challenging. Recently, a novel technique to calculate partial pressure of carbon dioxide in alveolar air (PACO2) using volumetric capnography (VCap) was validated. The purpose of the present study was to evaluate how VCap and other available techniques to measure PACO2 and partial pressure of carbon dioxide in mixed expired air (PeCO2) affect calculated VD/VT.MethodsIn a prospective, observational study, 15 post-cardiac surgery patients and 15 patients with ARDS were included. PACO2 was measured using VCap to calculate Bohr dead space or substituted with partial pressure of carbon dioxide in arterial blood (PaCO2) to calculate the Enghoff modification. PeCO2 was measured in expired air using three techniques: Douglas bag (DBag), indirect calorimetry (InCal), and VCap. Subsequently, VD/VT was calculated using four methods: Enghoff-DBag, Enghoff-InCal, Enghoff-VCap, and Bohr-VCap.ResultsPaCO2 was higher than PACO2, particularly in patients with ARDS (post-cardiac surgery PACO2 = 4.3 ± 0.6 kPa vs. PaCO2 = 5.2 ± 0.5 kPa, P < 0.05; ARDS PACO2 = 3.9 ± 0.8 kPa vs. PaCO2 = 6.9 ± 1.7 kPa, P < 0.05). There was good agreement in PeCO2 calculated with DBag vs. VCap (post-cardiac surgery bias = 0.04 ± 0.19 kPa; ARDS bias = 0.03 ± 0.27 kPa) and relatively low agreement with DBag vs. InCal (post-cardiac surgery bias = −1.17 ± 0.50 kPa; ARDS mean bias = −0.15 ± 0.53 kPa). These differences strongly affected calculated VD/VT. For example, in patients with ARDS, VD/VTcalculated with Enghoff-InCal was much higher than Bohr-VCap (VD/VTEnghoff-InCal = 66 ± 10 % vs. VD/VTBohr-VCap = 45 ± 7 %; P < 0.05).ConclusionsDifferent techniques to measure PACO2 and PeCO2 result in clinically relevant mean and individual differences in calculated VD/VT, particularly in patients with ARDS. Volumetric capnography is a promising technique to calculate true Bohr dead space. Our results demonstrate the challenges clinicians face in interpreting an apparently simple measurement such as VD/VT.Electronic supplementary materialThe online version of this article (doi:10.1186/s13054-016-1311-8) contains supplementary material, which is available to authorized users.
Highlights
Physiological dead space (VD/VT) represents the fraction of ventilation not participating in gas exchange
The present study demonstrates the consequences of applying different techniques for measuring PACO2 and PeCO2 to calculate dead space in mechanically ventilated patients with acute respiratory distress syndrome (ARDS) and normal lung function
We show that the differences introduced by replacing PACO2 with PaCO2 are more pronounced in patients with ARDS than in and a patient with acute respiratory distress syndrome (b) with values of PACO2, end-tidal partial pressure of carbon dioxide (PETCO2), PeCO2, and dead-space fraction (VD/VT)
Summary
Physiological dead space (VD/VT) represents the fraction of ventilation not participating in gas exchange. VD/VT is rarely calculated in clinical practice, because its measurement is perceived as challenging. A novel technique to calculate partial pressure of carbon dioxide in alveolar air (PACO2) using volumetric capnography (VCap) was validated. The purpose of the present study was to evaluate how VCap and other available techniques to measure PACO2 and partial pressure of carbon dioxide in mixed expired air (PeCO2) affect calculated VD/VT. In patients with acute respiratory distress syndrome (ARDS), dead space has prognostic value [1,2,3,4] and can be used to guide ventilator settings [5,6,7,8]. The most commonly used and easiest method to determine PeCO2 is volumetric capnography
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.