Abstract

Hybrid composites are an advanced solution that offers multifunctional capabilities, including exceptional strength-to-weight ratios, vibrational damping and impact absorption. This work describes the damping capacity and flexural behaviour of a hybrid fibrous-particulate system composed of glass/carbon fabrics and three distinct micro-inclusions: silica particles, carbon waste microfibres, and cement. A statistical methodology based on the full factorial design is applied to identify the effects of fibre stacking sequence, including carbon-C5, glass-G5, C2G3, G3C2, GCGCG and CG3C, microparticle inclusions and matrix/fibre volume fraction (40/60 and 60/40) on damping and bending responses. A non-linear finite element (FE) analysis is conducted to explore the stress distribution based on the stacking sequence and predict the failure mechanisms of the hybrid laminate. The results indicate significant interaction effects, with hybrid architectures showcasing approximately 33% higher performance compared to glass fibre composites. A greater dependence on the fibre layup sequence is found for the damping factor, flexural modulus and strength. Notably, the incorporation of silica microparticles leads to an increase in flexural strength. Furthermore, a greater volume fraction of the matrix phase enhances the rheological efficiency in terms of the fibre-particle interface. Carbon fibre layers placed symmetrically on both beam sides (CG3C) and bottom layers (G3C2) significantly enhance the bending performance of hybrid composites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call