Abstract

BackgroundRhododendron leaf extracts were previously found to exert antimicrobial activities against a range of Gram-positive bacteria. In this study, we investigated which of the extracts with these antimicrobial properties would be best suited for further exploitation. Specifically, the project aims to identify biologically active compounds that affect bacterial but not mammalian cells when applied in medical treatments such as lotions for ectopic application onto skin, or as orally administered drugs.MethodsDifferent concentrations of DMSO-dissolved remnants of crude methanol Rhododendron leaf extracts were incubated for 24 h with cultured epidermal keratinocytes (human HaCaT cell line) and epithelial cells of the intestinal mucosa (rat IEC6 cell line) and tested for their cytotoxic potential. In particular, the cytotoxic potencies of the compounds contained in antimicrobial Rhododendron leaf extracts were assessed by quantifying their effects on (i) plasma membrane integrity, (ii) cell viability and proliferation rates, (iii) cellular metabolism, (iv) cytoskeletal architecture, and (v) determining initiation of cell death pathways by morphological and biochemical means.ResultsExtracts of almost all Rhododendron species, when applied at 500 μg/mL, were potent in negatively affecting both keratinocytes and intestine epithelial cells, except material from R. hippophaeoides var. hippophaeoides. Extracts of R. minus and R. racemosum were non-toxic towards both mammalian cell types when used at 50 μg/mL, which was equivalent to their minimal inhibitory concentration against bacteria. At this concentration, leaf extracts from three other highly potent antimicrobial Rhododendron species proved non-cytotoxic against one or the other mammalian cell type: Extracts of R. ferrugineum were non-toxic towards IEC6 cells, and extracts of R. rubiginosum as well as R. concinnum did not affect HaCaT cells. In general, keratinocytes proved more resistant than intestine epithelial cells against the treatment with compounds contained in Rhododendron leaf extracts.ConclusionsWe conclude that leaf extracts from highly potent antimicrobial R. minus and R. racemosum are safe to use at 50 μg/mL in 24-h incubations with HaCaT keratinocytes and IEC6 intestine epithelial cells in monolayer cultures. Extracts from R. rubiginosum as well as R. concinnum or R. ferrugineum are applicable to either keratinocytes or intestinal epithelial cells, respectively. Beyond the scope of the current study, further experiments are required to identify the specific compounds contained in those Rhododendron leaf extracts that exert antimicrobial activity while being non-cytotoxic when applied onto human skin or gastrointestinal tract mucosa. Thus, this study supports the notion that detailed phytochemical profiling and compound identification is needed for characterization of the leaf extracts from specific Rhododendron species in order to exploit their components as supplementary agents in antimicrobial phyto-medical treatments.Electronic supplementary materialThe online version of this article (doi:10.1186/s12906-015-0860-8) contains supplementary material, which is available to authorized users.

Highlights

  • Rhododendron leaf extracts were previously found to exert antimicrobial activities against a range of Gram-positive bacteria

  • We conclude that leaf extracts from highly potent antimicrobial R. minus and R. racemosum are safe to use at 50 μg/mL in 24-h incubations with HaCaT keratinocytes and IEC6 intestine epithelial cells in monolayer cultures

  • Beyond the scope of the current study, further experiments are required to identify the specific compounds contained in those Rhododendron leaf extracts that exert antimicrobial activity while being non-cytotoxic when applied onto human skin or gastrointestinal tract mucosa

Read more

Summary

Introduction

Rhododendron leaf extracts were previously found to exert antimicrobial activities against a range of Gram-positive bacteria. The project aims to identify biologically active compounds that affect bacterial but not mammalian cells when applied in medical treatments such as lotions for ectopic application onto skin, or as orally administered drugs. Plant-based medications are well-accepted by patients and are often preferred over chemically produced therapeutics because of their well-known health-benefitting bio-active ingredients [2,3,4,5,6]. Knowing and assessing the potentials of plant-derived bio-active compounds is important for further drug development. This notion is deducible from the increasing interest of the pharmaceutical industry in gaining the rights to identify and exploit plant-borne compounds from species-rich rainforests in countries of tropical and subtropical regions [9,10,11]. The aim of this study is to establish and provide an experimental, cell biological platform that allows for the identification of plant species that should be characterized and assessed in more detail

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.