Abstract

The purpose of this study was to evaluate the effects of cyclodextrin (CD) on the extraction of Macondo well oil from contaminated porous media over a range of hydroxypropyl-β-CD (HPβCD) concentrations. To our knowledge, this is the first dataset on this type of CD yet assembled for an actual crude oil. The results showed that HPβCD can significantly increase oil extraction efficiency, demonstrated by increasing concentrations of all tested normal alkanes (nC(15)-nC(35)) and polyaromatic hydrocarbons (PAHs) in the aqueous phase with increasing CD concentration. A linear relationship between the extraction enhancement effect and CD concentration were verified experimentally and high correlation coefficients for total PAHs (R(2) = 0.82) and alkanes (R(2) = 0.99) were determined. For a 20% CD solution, 3.13 wt% of alkanes and 32.12 wt% of total PAHs were extracted to the aqueous phase, which was significantly more than what was extracted with water only (0.04% and 0.21% for alkanes and PAHs, respectively). This result shows that the remediation of oil contaminated media can be significantly enhanced through the use of HPβCD solutions in flushing or pump and treat operations to remove sorbed oil. The CD extraction enhancement effect decreases with increasing n-alkane chain length for the carbon number range tested. CD significantly enhanced PAH extraction from sand and the enhancement effect increased in the order of parent compounds < C-1 substituted < C-2 substituted < C-3 substituted for most PAHs tested. This study provides important information to assess the feasibility of using CD as a near-shore agent to enhance the cleanup of oil contaminated porous media.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call