Abstract

Customized alveolar bone augmentation provides sufficient and precisely regenerated bone tissue for subsequent dental implant placement. Although some clinical cases have confirmed the successful use of the patient-specific polyetheretherketone (PEEK) scaffolds, the biomechanical property and osteogenic performance of the patient-specific PEEK scaffolds remain unclear. The objectives of this study were (1) to evaluate the space maintenance capacity and osteogenic performance of the patient-specific PEEK scaffolds for customized alveolar bone augmentation and (2) to compare the biomechanical properties of three-dimensionally printed titanium scaffolds and PEEK scaffolds. Both titanium scaffolds and PEEK scaffolds were designed and manufactured via additive manufacturing technology combined with computer-aided design (CAD). In three-point bending tests, the bending strength of the PEEK scaffold was about 1/3 that of the titanium scaffold. Accordingly, the equivalent strain value of the internal bone graft beneath the PEEK scaffold was about 3 times that beneath the titanium scaffold in finite element analysis, but the maximum deformations of both scaffolds were less than 0.05 mm. Meanwhile, in in vivo experiments, it is demonstrated that both scaffolds have similar space maintenance capacity and bone ingrowth efficiency. In conclusion, patient-specific PEEK scaffolds showed significantly lower biomechanical strength but comparable space maintenance and osteogenic properties to the titanium counterpart. Compared with traditional guided bone regeneration (GBR) surgery, both patient-specific PEEK and titanium scaffolds can achieve excellent osteogenic space maintenance ability. This study provides a preliminary basis for the clinical translation of the nonmetallic barrier membrane in customized alveolar bone augmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.