Abstract

ABSTRACTMultiple nuclides commonly occur together and exert toxicity simultaneously, but the difference between single and combined effects of the nuclides is rarely investigated. Epiphytic Tillandsia species are efficient air pollution biomonitors, but rarely used to monitor nuclide contamination. Two Tillandsia species, that is, T. brachycaulos and T. stricta, were chosen to test their capacity to accumulate Cs and Sr. Most plants were able to endure Cs and Sr stress for a long period, which suggested these species could resist toxic elements physiologically and metabolically. With the increasing Cs or Sr concentrations, nuclide contents in both species increased significantly, indicating the potential of Tillandsia species in monitoring nuclide pollutants. However, when the plants were treated with combined nuclides, the content of each ion decreased distinctly compared to those treated with single ion, which suggested Cs and Sr influenced and inhibited each other. In addition, T. brachycaulos seemed more efficient in the uptake of Sr, while T. stricta was more efficient for Cs. Both species accumulated more Sr than Cs at low concentrations, while more Cs than Sr at high concentrations. These results indicated that the uptake of Cs and Sr was related to both the concentrations of the nuclides and the plant species exposed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call