Abstract

AbstractRunning Reelfoot Bayou (RRB) is the outlet canal of Reelfoot Lake, the largest natural lake in Tennessee. RRB is not able to contain discharge from Reelfoot Lake greater than the bankfull discharge of 28 m3/s (1000 ft3/s), which typically occurs at the beginning of the growing season (April–June). Historically, the planting of crops has been delayed until flooding subsides and cropland has drained. The objective of this study is a preliminary quantification of cropland inundation to determine its spatial distribution in the RRB floodplain. Inundated croplands in the RRB floodplain were delineated over a range of spillway discharges from 2 to 57 m3/s (70–2000 ft3/s), using one‐dimensional–two‐dimensional hydrodynamic modeling and multispectral satellite images (Landsat 8 and Sentinel‐2). The composite maps made by combining the simulated and image‐derived flood maps were overlaid on the United States Department of Agriculture CropScape layer to determine the inundation of individual summer crops during the growing season. About 25% of the inundated croplands are flooded at discharges of RRB less than 28 m3/s, implying wetland hydrology. The results of this analysis can be used to inform operational management of the Reelfoot Lake spillway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call