Abstract

Increasing reliance on non-renewable mineral resources reinforces the need for identifying potential supply constraints before they occur. The US National Science and Technology Council recently released a report that outlines a methodology for screening potentially critical minerals based on three indicators: supply risk (R), production growth (G), and market dynamics (M). This early-warning screening was initially applied to 78 minerals across the years 1996 to 2013 and identified a subset of minerals as “potentially critical” based on the geometric average of these indicators—designated as criticality potential (C). In this study, the screening methodology has been updated to include data for 2014, as well as to incorporate revisions and modifications to the data, where applicable. Overall, C declined in 2014 for the majority of minerals examined largely due to decreases in production concentration and price volatility. However, the results vary considerably across minerals, with some minerals, such as gallium, recording increases for all three indicators. In addition to assessing magnitudinal changes, this analysis also examines the significance of the change relative to historical variation for each mineral. For example, although mined nickel’s R declined modestly in 2014 in comparison to that of other minerals, it was by far the largest annual change recorded for mined nickel across all years examined and is attributable to Indonesia’s ban on the export of unprocessed minerals. Based on the 2014 results, 20 minerals with the highest C values have been identified for further study including the rare earths, gallium, germanium, rhodium, tantalum, and tungsten.

Highlights

  • Modern technology is in large part possible through the use of increasingly complex materials that utilize some of the rarest elements in Earth’s upper continental crust

  • The first stage provides an earlywarning screening that identifies minerals as Bpotentially critical^ based on three indicators: supply risk (R), production growth (G), and market dynamics (M)

  • These indicators were selected because they capture different aspects of mineral criticality and because of their complementary nature: R is an assessment of production concentration at the country-level weighted by each country’s governance rating, G quantifies growth in a mineral’s global production to capture changes in its market size, and M tracks the mineral’s price volatility (US National Science and Technology Council 2016)

Read more

Summary

Introduction

Modern technology is in large part possible through the use of increasingly complex materials that utilize some of the rarest elements in Earth’s upper continental crust. Germanium is used in various infrared (IR) devices including night vision goggles, binoculars, surveillance cameras, and IR heat-seeking missiles (Butterman and Jorgenson 2005). Uninterrupted access to these and other specialized minerals is crucial for both economic development and national security. There are, several factors that may increase the likelihood, or exacerbate the impact, of a supply disruption for some of these minerals. Concentrated production in a few politically or socially unstable countries, rapid increases in demand due to the introduction of new and disruptive technologies, inelastic supply due to the mineral being produced solely as a byproduct, limited post-consumer recycling, McCullough E., Nassar N.

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.