Abstract

The interaction and combination of multiple embedded cracks would accelerate cracks growth and shortened the components life. In this study, the interaction of the multiple embedded cracks in a finite thickness plate subjected to remote tensile loading in the creep regime was investigated using comprehensive finite element calculations. In addition, the features of cracks and material properties (e.g., crack aspect ratios a / c, relative crack depth a / t, relative distance s / c and creep hardening exponent n) were considered. The results revealed that the creep interaction factor distribution was asymmetric along the crack front. In addition, the creep interaction factor increased as the crack depth and creep hardening exponent increased and gradually decreased as the position away from the each other. However, the crack shape changing from elliptical shape to circular shape had slight impact. Furthermore, based on the comprehensive analyses, an empirical formula to determine the multiple interaction level considering the crack configurations and the material properties was proposed for the embedded cracks operating at elevated temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.