Abstract

The paper discusses two approaches to multiphase nonisolated dc-dc converter design. An approach based on independent phases is directly compared to an approach using coupled phases. The comparison is performed through theoretical analysis of respective conversion functions, input and output filter requirements, and required input inductor size. Three-dimensional (3-D) high-power-density computer aided design (CAD) models and full-scale 56 kW prototypes based on both approaches were designed, built, and experimentally compared. As expected, the approach with independent phases has a considerable advantage regarding the low-power conversion efficiency where the efficiency can be up to 2% higher than with the coupled approach. On the other hand, the design with coupled inductors can reach power density as high as two times that of the independent phase design (87 kW/L versus 44.2 kW/L). Therefore, the use of coupled inductors may be very beneficial for space critical applications. In case of the electric vehicle power train, both factors may be very important and the suitable approach should be chosen based on system design priorities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.