Abstract

In the present work, corrosion resistance of surface-coated galvanized steel was quantitatively determined by an analysis of the alternating current (AC) impedance spectra measured on the salt-spray-tested specimen. To evaluate the corrosion resistance of the surface-coated galvanized steel, AC impedance spectroscopy was performed on the salt-spray-tested specimen previously exposed to salt-sprayed corrosive environment. From the analysis of the impedance spectra, the area fraction transient of white rust θ 2(t) was theoretically derived from the equivalent circuit equation by using two fitting parameters. The values of the two fitting parameters were determined by fitting the empirical transient equations to the area fraction of the resin coating layer and to the total resistance obtained from the impedance spectra measured, respectively. From the analyses of θ 2(t) for four kinds of surface-coated galvanized steels with various resin coating layers, it is indicated that as the values of the two fitting parameters decrease in the order of CP, GI, OD and OM (commercial trade names) specimens, the corrosion resistance increases in that order as well. Furthermore, from the quantitative comparison of the two fitting parameters with the polarization resistance of the upper resin coating layer R p determined from the potentiodynamic polarization curve, it is suggested that the two fitting parameters decrease in value as well with increasing R p.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call