Abstract
Several techniques have been used to demonstrate that human arteries respond to atherosclerosis by increasing their total arterial area to prevent a decrease in blood flow. Three-dimensional reconstructions of coronary arteries can document this compensatory response accurately and specifically. Seven human coronary arteries were reconstructed using intravascular ultrasound and biplane angiography, and vessel geometries were quantified. In all seven vessels, as plaque area increased, overall vessel area increased (R = 0.986, 0.933, 0.984, 0.678, 0.763, 0.963, and 0.830), but luminal cross-sectional area did not significantly decrease. Focal compensatory enlargement was identified in each vessel, and in some cases this response appeared to occur until the vessel was 65% occluded. Luminal enlargement near the proximal ends was attributed to the natural taper of the vessel. The semi-automated, three-dimensional segmentation technique used in this study allows reproducible quantification, as there is no subjective manual tracing involved. Following the intravascular ultrasound transducer in time and space with biplane angiography allows for accurate reconstruction with or without automated pullback devices. Information on the rate of change of vessel measurements is also presented, which, when combined with visualization of accurate 3D geometry, provides a unique assessment of coronary compensatory enlargement. This reconstruction technique can be applied in a clinical environment with no major modification.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.