Abstract

Some metals are nowadays considered environmental pollutants. Although some, like Cu and Zn, are essential for microorganisms, at high concentrations they can be toxic or exert selective pressures on bacteria. This study aimed to assess the potential of Cu or Zn as selectors of specific bacterial populations thriving in wastewater. Populations of Escherichia coli recovered on metal-free and metal-supplemented culture medium were compared based on antibiotic resistance phenotype and other traits. In addition, the bacterial groups enriched after successive transfers in metal-supplemented culture medium were identified. At a concentration of 1mM, Zn produced a stronger inhibitory effect than Cu on the culturability of Enterobacteriaceae. It was suggested that Zn selected populations with increased resistance prevalence to sulfamethoxazole or ciprofloxacin. In non-selective culture media, Zn or Cu selected for mono-species populations of ubiquitous Betaproteobacteria and Flavobacteriia, such as Ralstonia pickettii or Elizabethkingia anophelis, yielding multidrug resistance profiles including resistance against carbapenems and third generation cephalosporins, confirming the potential of Cu or Zn as selectors of antibiotic resistant bacteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call