Abstract
For the correct simulation of solidification and temperature evolution in the continuous casting of steel, the determination of boundary conditions describing the heat-transfer phenomena through the strand surface, in each cooling zone of the casting machine, is extremely important. These boundary conditions are usually expressed as heat fluxes or heat transfer coefficients. In the present study, the surface temperature of the steel billet was experimentally determined in a steelmaking plant by infrared pyrometers positioned along the secondary cooling zone during real operation of a continuous casting machine. These data were used as input information into an Inverse Heat Transfer Code, implemented in this work, in order to permit the heat transfer coefficients of each spray cooling zone to be determined. The resulting simulations of temperature evolution during continuous casting have shown that the solidification was not complete at the unbending point and that there was a risk of breakout at the mold exit under the adopted operating conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.