Abstract

Simple SummaryThe rapid and sustained growth rate of global aquaculture has forced the aquaculture industry to explore alternative and more sustainable feed ingredients. Plant protein ingredients are promising substitutions for fish meal in the aquaculture industry. The current study aimed to investigate the potential influence of replacing poultry by-product meal protein with conventional cottonseed meal protein (CCMP) or low-gossypol cottonseed meal protein (LGCMP) on growth, feed utilization, gut micromorphology, and immunity of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) juveniles fed low fish-meal (18.53%, dry matter) diets. Results demonstrated that, without any reduction in fish performance, 80% dietary PBMP could be replaced by CCMP, while this replacement level was 40% for LGCMP. Survival remained unaffected in all dietary treatments, and no fish mortality was observed during the growth trial. These results suggest that cottonseed meal could be a suitable alternative protein source for hybrid grouper farming.A 9-week growth trial was carried out to assess the influence of replacing poultry by-product meal protein with conventional cottonseed meal protein (CCMP) or low gossypol cottonseed meal protein (LGCMP) on growth, feed utilization, gut micromorphology, and immunity of hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂) juveniles fed low-fish meal (18.53%, dry matter) diets. Eleven experimental diets were prepared. The control diet (PBMP) contained 46.15% poultry by-product meal protein. Both conventional cottonseed meal protein (CCMP) and low-gossypol cottonseed meal protein (LGCMP) were used in replacement ratios of 20, 40, 60, 80, and 100% of poultry by-product meal protein (PBMP) from the control diet, forming ten experimental diets (CCMP20, CCMP40, CCMP60, CCMP80, CCMP100, LGCMP20, LGCMP40, LGCMP60, LGCMP80, and LGCMP100). Results demonstrated that weight-gain percentage (WG%) was not different between different sources of cottonseed meal (CCMP and LGCMP). However, values of WG% significantly differed among different replacement levels, with CCMP80 and LGCMP40 having significantly higher values compared to other treatments. Fish fed CCMP80 and LGCMP40 exhibited higher protein efficiency ratios (PERs) than fish fed other experimental diets. The regression analysis from a second-order or third-order polynomial model based on WG% showed that the optimal PBMP replacement levels by CCMP and LGCMP are 74% and 33%, respectively. The whole-body lipid contents remarkably decreased as dietary CCMP or LGCMP inclusion levels increased. The relative mRNA expression of insulin-like growth factor-1(IGF-1) in liver was higher in fish fed CCMP80 and LGCMP40 diets compared to fish fed other diets. Generally, in low-FM diets of hybrid grouper, CCMP and LGCMP could replace 74% and 33% of PBMP, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call