Abstract

Human-induced pluripotent stem cell (iPSC) technology paves the way for next-generation drug-safety assessment. In particular, human iPSC-derived cardiomyocytes, which exhibit electrical activity, are useful as a human cell model for assessing QT-interval prolongation and the risk of the lethal arrhythmia Torsade de Pointes (TdP). In addition to proarrhythmia assay, contractile behavior has received increased attention in drug development. In this study, we developed a novel high-throughput in vitro assay system using motion vectors to evaluate the contractile activity of iPSC-derived cardiomyocytes as a physiologically relevant human platform. The methods presented here highlight the use of commercially available iPSC-derived cardiomyocytes, iCell cardiomyocytes, for contractility evaluation recorded by the motion vector system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call