Abstract

Machining of metals is characterised by plastic deformation occurring at high strains, strain-rates and temperatures. In the few predictive machining theories reported in literature, two types of constitutive equations, the power-law relation and Johnson-Cook equation, have mainly been used for describing the material's plastic behaviour. This paper aims at assessing the above constitutive equations in terms of their ability to describe the material behaviour for a wide range of strain-rates and temperatures encountered in machining. The focus is on the plain carbon steel and copper work materials. Using the above constitutive equations, flow stress results were determined for conditions encountered in machining and then compared with experimental results obtained from literature which are compatible with the rate equations applicable to the microscopic deformation mechanisms under considered conditions. It was concluded that considerable improvements are required for the aforementioned constitutive equations for accurate prediction of the work material behaviour under machining conditions and that further development is needed for more reliable and accurate constitutive equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call