Abstract

Exploring commercial and inexpensive sorbents for extraction of organic pollutants is still an active area of research. Ultrahigh molecular weight polyethylene sieve plate (UMPESP) is a commercially available, low-cost, and porous frit, which has been widely used in solid-phase extraction cartridges to fix the filling materials. In this work, UMPESP was investigated for the extraction of polycyclic aromatic hydrocarbons (PAHs) from water samples. The desorption and sorption efficiencies of UMPESP were first evaluated and compared with two previously reported sorbents, low-density polyethylene plastic pellet (LDPEP) and silicone rod (SR). The comparative results showed that quantitative desorption of analytes from UMPESP, which could be easily achieved with 2 × 1.5mL n-hexane, was more effective than that of LDPEP (>6 × 1.5mL n-hexane) and comparable to that of SR. Additionally, shorter equilibrium time was rendered by UMPESP (shaking for 120min) compared with SR (>480min), due to the porous structure and larger surface area of the former. Different parameters that affect the extraction efficiency, including organic modifier, ionic strength, and pH value, were then studied. The optimized method coupled with gas chromatography-mass spectrometry afforded good linearity in a concentration range of 10-5000ngL-1 (except acenaphthene in the range of 25-5000ngL-1) with coefficients of determination ranging from 0.9957 to 0.9995 and relative standard deviations below 13.8%. The limits of detection and quantification were 0.04-3.35ngL-1 and 0.13-11.16ngL-1, respectively. Finally, the method was successfully applied to determine PAHs in real water samples, and the results showed no statistically significant difference with the concentrations derived from liquid-liquid extraction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.